Originally posted by sonhouseHe used another way of writing i:
What is n in that equation?
And how does PI enter into this? interesting.
Also, what does exp mean? exponent? if so, what exponent?
i = e ^ (PI * i / 2)
Since 1 = e ^ (2*PI*i) you can add extra factors of e ^ (2*PI*i), hence the n.
So i^i = e ^(-PI/2) mod e ^ (2*PI)
Originally posted by AThousandYoungIt's not part of the defiition of i, but it's an extremely useful general result:
i is part of the definition of i? That doesn't make sense.
cos(theta) + i sin(theta) = e^(i theta)
He's using the case where theta = PI/2. Then the left-hand side is equal to i.
Originally posted by mtthwI'm getting PI i'd thinking about this:
It's not part of the defiition of i, but it's an extremely useful general result:
cos(theta) + i sin(theta) = e^(i theta)
He's using the case where theta = PI/2. Then the left-hand side is equal to i.q
So theta is just any angle and he made that angle PI/2.
You said 'extremely useful'. can you show some samples of the usefulness of this? Also, are there other identities like this that can be useful?
Other angles of theta, or equivalences?
what about definitions in radians? Are there any generalizations to be made there?
Originally posted by mtthwNice. Thanks for that. I Goog'd De Moivre and found this neat wiki:
Or almost any serious applied mathematics. It crops up in wave theory, quantum mechanics, fluid dynamics, instability calculations...
http://en.wikipedia.org/wiki/De_Moivre's_formula
This piece goes into it in some detail.
BTW, my present read is 'The Riemann Hypothesis"
by Karl Sabbagh. Anyone read this? Great read if you are into maths.
I think my next maths book will be 'the joy of i'. I think there is a book with something like that title.
Calculating with i ( as sqrt(-1) ) is only an extension of the real number system. What you can do with R you can do with C.
...and more:
With the complex number system (C) you can calculate square root of any number (including complex numbers), not only positive numbers. You can calulate arcsin with any number (including complex numbers), not only numbers between -1 and 1. You can take logaritm of any number (including complex numbers), not only positive numbers. And so on.
With i = sqrt(-1) you can calculate i^i, sqrt (i), log (i) with 'no problem'. But you cannot calculate i/0 but who can?
But one pecularity of the complex number is that no complex number is larger or smaller than any other number. Another one is that negative infinity is the same as positive infinity.
Complex numbers are fun!
Originally posted by sonhouseI love the fact that -e^(pi.i)=1. (also shown by de Moivre's formula)
Nice. Thanks for that. I Goog'd De Moivre and found this neat wiki:
http://en.wikipedia.org/wiki/De_Moivre's_formula
This piece goes into it in some detail.
BTW, my present read is 'The Riemann Hypothesis"
by Karl Sabbagh. Anyone read this? Great read if you are into maths.
I think my next maths book will be 'the joy of i'. I think there is a book with something like that title.
It's one of those things that show you how mathematics can be so beautiful and understand why some cultures saw glimpses of the divine in them. Three of the most important mathematical constants combined into such a simple result.
But one peculiarity of the complex number is that no complex number is larger or smaller than any other number. Another one is that negative infinity is the same as positive infinity.
I follow everything but that one. It sounds like you are saying all complex numbers are equal?? And that (+inf) + (-inf)=0? and (+inf) * (-inf)= (-inf)^2?
Originally posted by FabianFnasI didnt know that!
Calculating with i ( as sqrt(-1) ) is only an extension of the real number system. What you can do with R you can do with C.
...and more:
With the complex number system (C) you can calculate square root of any number (including complex numbers), not only positive numbers. You can calulate arcsin with any number (including complex numbers), not only ...[text shortened]... er one is that negative infinity is the same as positive infinity.
Complex numbers are fun!
But isnt it a matter of definition?
What if I define the 'size' of a complex number C where C = R +iI as
sqrt(I^2 + R^2) ... does that have a use?
🙄